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M A T H E M A T I C A L  M O D E L I N G  O F  T H E R M O M E C H A N I C A L  
P R O C E S S E S  IN A I R C R A F T  S T R U C T U R E S  

V .  S. Z a r u b i n  a n d  G .  N .  K u v y r k i n  UDC 539.434:681.3.06 

Consideration is given to some thermomechanical models of  the behavior of structural materials that 
are based on the thermodynamics of  irreversible processes and on the analysis of  physical processes in 
polyc~ystalline materials. 

Many important structural elements of aircraft operate under intense thermal and mechanical effects. 
The scientific foundation of analyzing the efficiency and durability of these thermally stressed structures is 
thermomechanics which is based on the thermodynamics of irreversible processes, thermophysics, the mecha- 
nics of  a detbmlable rigid body, and other fundamental disciplines, and widely uses the methods of applied 
mathematics and state-of-the-art computing aids. In this sense, thermomechanics is a characteristic example of  
the synthesis of new scientific trends brought about by the needs of  engineering practice. 

The value and reliability of the results of mathematical modeling of thermomechanical processes are 
essentially dependent on the adequacy of the models of the behavior of  structural materials at variable tempera- 
tures and loadings, on the completeness of allowance for the actual conditions of thermal and tbrce loading of  
structural elements in technological, testing, and operating modes, and on the perfection and efficiency of the 
applied computing methods and aids. 

One of the possible variants of  constructing a thermomechanical model of the behavior of structural 
materials is based on the model of a medium with internal state parameters. Such a medium is described using 
one scalar parameter, two vector parameters, and one tensor parameter. Their physical meaning is as follows. 
Equilibrium themlodynamic processes are characterized by the use of the absolute temperature T(xl, x2, x3, t), 
which determines the free energy of the system. However, if the process in the thermodynamic system is non- 
equilibrium (or locally nonequilibrium), consideration is also given to the thermodynamic temperature g(-q, xe, 
x3, t) (the scalar internal parameter), which coincides with the absolute temperature, if its rate of change is 
equal to zero [1]. The absolute temperature T is a measure of the mean kinetic energy of molecules in the 
equilibrium process, and the thermodynamic temperature, in the nonequilibrium process. The propagation of 
heat is characterized by two intemal vector parameters )~l)(.rl, X2, X3, t) and Z~2)(xl, xe, x3, t), which, for exam- 
ple, lor crystalline materials can be associated with the vectors of distribution density of phonons and electrons, 
respectively [2]. The internal tensor parameter ~j(Xl, x2, :¢3, t) represents the nonequilibrium mechanical proc- 
esses at the microlevel. 

The kinetic equations for changes in Z, ~ t )  Z~2), and Zij in a linear approximation are taken in the 
torm [3, 4] 

(2) • (2)=~i(2) (2) IT)~----X--Z, T(lq )~/1) =~i(1)-)~11), Tq Zi Zi ' '~r~ij----~ij--Zij" (I) 

The expression for the free energy is specified in a quadratic tbrm 
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+ Pij~(2) ~)(2) Z12)/2 + Kijkt Xkt Xii/2 + pB (T) + pB~ (T, Z) - 

C " (r). (7-) (73 (2) 
- ijkl ~,- e-kt ) ( -  gij ) /2 + Digl. t fJu ( -  gij ) • 

a (O, To, To, O,O,O)=O. 

Equation (2) was written assuming that total and thermal deformations are insignificant: I1~,/11 << 1, 
Ile}f)ll << 1, Ile}a~)ll << 1 and IIz~)ll << l, IIX}2)II << 1, IIxrll << 1, where I1.11 is the Euclidean matrix norm, and l~;j = 
e ~ -  e ~ ,  i, j, k, l = 1, 2, 3. In Eq. (2) and thereafter, we agreed on summation with respect to the double Latin 
indices. Clearly, if Z --+ T, then 13 o --+ 0. Assuming a linear dependence of  e~jr) on T and of ~I~ ) on X, we set 
3e~)/3X = O~-~] 3~aT = ¢x(/9~i and Bo(To) = O, Bl(To, To) = 0. In Eq. (2), the independence of the free energy of  
T and X gradients, i.e., aA/O(aT/axk) = 0 and aA/O(O~/ax,,,) = 0, follows from a simultaneous consideration of  
the first and second (in the form of the Clausius-Duhem equation) laws of  thermodynamics. 

The components of the stress tensor o/j and the entropy h are related to the free energy as ¢~6 = 
paA/O~ij and h = -aA /aT ,  i.e., allowing for Eq. (2) 

_(r)~ D (3) (Yij = Cijkl  (Ekl -- ekt I -- {/kl ~kl -- Hijkl  Xkl  , 

(T) (4) 
h = O~ij (Cijkl  S k i - -  Hijkl  ~ k l ) / p  - OBo/OT- aB1/OT, 

which makes it possible to write the energy equation in the form 

2 "l" '3 
- 9TO B o / O T - T -  pTO-BI/(OTOX) X = 

= - T° t2  (Cijkt gt-I - Hijkt f~tl) - aqi/Oxi + [Jr. (5) 

The subsequent concretization of  Eqs. (3) and (5) involves a selection of the form of the functions of 
steady-state values tbr the internal state parameters and the vector of the heat flux density with the components 
qi(xb x2, x3, t). In the simplest case, we set 

= T ,  ~i ,1,  = _ Z ~ i ) ) ~ r / %  -- ZSi~ ) ~ Z / % ,  

~i(2) = _ ~))aT/D.,) - Y~2~az/oxj, 
(6) 

- (~) ( l ) + .  (2 ) .  (2) 
Xij = Xijkl  Ek l ,  qi = q)ij Zi  ~Pij Xj , 

which is consistent with the fundamental principles of  rational thermodynamics [1]. Then, the heat conduction 
is described by the equation arising from Eqs. (5), (2), and (6) 

' T ,j " ( , - , ' / < , ,  1 
9 c e ~ + p c ~ / . c r l e x p l _ ~ l _ _ _ _ T d  { + ~r~ • R i j u j e x p l _ _ _ | _ _ _ _ _ r d t / . t ~ | =  

<, t , , ) a ,  o t ] 

°x i [  g JoeXp'-x:----Tlot,---~xj~, ) +2~o g - ! e x p  --)--7--dt'-,v)OtO, 
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Fig. 1. Mechanical analog of the glide system in a crystal grain of a poly- 
crystalline material. 

_Iexp(t-t"~l 'r I -t-t ' '~-I~,dt c-:-j2T "dt, "] • ,,,3) aT t-t" I a2T 
! - - ~ ( ° - ! - - j e x p  zr )~t ~xj j +  ~ij - exp - ,l:(q2 ) )3t,oxjdt' + 

o t Zq )~v,> I 

( t - t " ~  a2T ' l_ Iexp  / t - t '  × S e x p (  t - t " l  a2T dt"d; - j e x p / - - - /  , dt - - ,, + p r .  (7) 
+ 214' o t Ja'a'; *To t ,, t---J T a, ax, 

A concretization of Eq. (3) with allowance for the assumptions made has the form 

, [ ' 

o " ,, ( "or )at"  - I e x p  ( T J - ~ - t '  J (8) 

Relations (7) and (8) describe a fairly wide class of relaxing media and account for the following fac- 
tors: delay of the deformation and heat accumulation in high-intensity loading (the second terms on the left- 
hand side of Eq. (7) and on the right-hand side of Eq. (8)), finiteness of the velocities of heat propagation V 1 
and V2 for each physical process of heat conduction, which are defined by the relations 

,z-2 ,~(1) (1) n ,~(3) - (2) 
p C e V  1 -- A,(j #ljtli/ '~q ---- 0 ,  p c e V  2 - O "  Aij  #! ini / 'r  q = , 

the effect of  the nonequilibrium of the heat accumulation on the heat conduction (the second and fourth terms 
in the square brackets on the right-hand side of Eq. (7)), and also the effects of thermodynamic connectedness 
(the third term on the left-hand side of Eq. (7)). 

From relations (7) and (8) it is possible to obtain their asymptotic representations for x--+ 0 (x = ~T, 
"dq 1), "C(q 2), "to). In these cases, 

tim S exp t - t dt" = O, lim l l e x  p t - t  dt '=c)( ')  

and the asymptotic representations following from relations (7) and (8) describe particular thermomechanical 
models of relaxing media. For example, tbr Zr--+ 0, ,(ql)_.+ 0, and ,(q2)_+ O, relations (7) and (8) describe a 
standand linear medium with allowance for the effect of the connectedness of the deformation and heat con- 
duction. 

In some cases, practical calculations of thermally stressed aircraft structures necessitate a model of a 
structural material that accounts not only for the connection between the deformation and the stresses in the 
form of (3) but also for inelastic deformation under nonisothermal conditions. Let us consider one of the ways 
to construct this model taking uniaxial loading as a simple case in point. As a prototype, use will be made of  
the mechanical analog of the glide system in a crystal grain of polycrystalline material [5], depicted in Fig. 1. 

At relatively low temperatures, thermally activated processes in a structural material proceed rather 
slowly (the viscosity of the fluid in the viscous-friction elements 2 and 3 in the figure is high). Then, the 
increment d E  (p) in the instantaneous plastic deformation occurs under the condition 
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Io -d l  =o*, (9) 

where o and o'  in the figure correspond to the external force and tension of  spring 1, which in the general case 
has a nonlinear characteristic, and 6" in the mechanical analog corresponds to the resistance force due to dry 
friction between element 3 and base 4 (spring 5 in the figure models the property of linear elasticity of  the 
material). 

We assume that, under isothermal conditions, o ~ is a function of  a(P) and the temperature T 

o' =f '  (~(o), 7), (10) 

and ~* is a function of T and the absolute accumulated plastic deformation 

~p~ 
E 

• ,=j" O* =f*  (qp, 7) ,  qp l de(p) I . (1 1) 

Condition (9) is necessary but not sufficient for the occurrence of increments in the instantaneous plas- 
tic deformation. It should be completed with the condition 

d' I o - o'] = d' ((o - cJ') sign (o - o')) > d'o*,  (12) 

where a prime on the differential sign indicates that the increments are calculated disregarding the material 
hardening caused by the running plastic deformation, i.e., at dE (p) = 0. Then, with account for Eqs. (10) and 
(11) in lieu of Eq. (12), we obtain 

(do - k74/T) sign (~ - (~') > k~4T, kr = Of'OT , kr* = Of*OT " (13) 

With condition (12) satisfied, the conversion, in expression (13), from the inequality to the equality 
will correspond to a neutral loading, and the replacement of the "greater" sign with the "less" sign, to the 
initiation of elastic unloading of the material• In these two cases, there is no increment in the instantaneous 
plastic deformation, i.e., de (p) = O. 

Since condition (9) is a necessary condition of the plastic deformation of the material, according to 
Eqs. (10) and (11), the following equality holds true for total increments: 

( d o  - k T d r  - kpda (p)) sign (o - o') = k*Tdr + k ; d q ;  , k v - 

Comparing Eqs. (13) and (14), we obtain 

kpde w) sign (o  - o') + k~dq~ > O, kp - 
~E (p  ) " 

Oq; 

(14) 

For steadily deformable materials, the sign of the increment de (p) coincides with the sign of the difference 
- ~ ,  i.e., with account for (11) we have 

dE (p) sign (~ - c') = [dE (p) ] = dqp. 

From the last two relations for hardening coefficients we obtain a constraint of the form 
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bf' ~f* (15) 
kp + kp = ~E(p ) + O3qp* > 0 .  

In the particular case of a material with isotropic softening (k~, < 0), a steady plastic deformation is 
possible, if kp> ]kp[. In the limit case kp = [kp[, such as for an ideal plastic material with a constant yield 
strength, a unique connection of the increments d~ and dc (p) can be established only given additional condi- 
tions. 

A temperature rise intensifies thermally activated processes in the material, and even under time (t)-in- 
variable conditions of thermal and mechanical effects, an increment in the inelastic deformation appears as a 
result of  the creep effect. For the rate c(e) of the creep c ~c), we adopt the relation 

~(c) _ o3E (c) 
at -fc ( ~ - ~ ,  73. 

In the mechanical analog (see the figure), the finite viscosity of the fluid in the nonlinear viscous-fric- 
tion elements 2 and 3 corresponds to the manifestation of the creep effect, with the characteristic of element 3 
corresponding to the function fc. The thermal softening of the material causes a o ~ decrease in magnitude such 
that under nonisothermal conditions 

~f 
P 

6"= kTl"+ kpE (p) + kc f  c ((~ - (y', 73 - f "  03', 73, k c - 
0E~c) • 

(16) 

Now, with the manifestation of the creep effect, f '  = f" (c w), E~c), 73 and the function f" corresponds to the 
characteristic of the viscous-friction element 2 in the mechanical analog (see the figure). In a particular case 
with the same mechanism of anisotropic hardnening of the material due to the instantaneous plastic deforma- 
tion and creep we have k p  = k c.  

The rate of total deformation 

includes the rate 

EE2,rC 

of the elastic deformation c ~e), where T is the rate of change in the temperature, and also the rates ~t~ ~(p), and 
~(c) of the thermal and instantaneous plastic deformation and creep, respectively. In the mechanical analog (see 
the figure), the elasticity modulus corresponds to the rigidity of spring 5, c(P) is proportional to the velocity of 
the element 3 movement relative to base 4, and c -  ~(~ are the velocities of the point of application of the 
external force. 

At a high temperature, the thermal softening of the material also has an effect on (y*. With fairly long 
holding of  the material under isothermal conditions (T = 0) without inelastic deformation (c~P) = ~(c) = 0), the 
value of o* should tend to the level 0*(73, characteristic of the given material, which corresponds to the yield 
strength after high-temperature annealing. Let 

, , . . . .  , . . . .  . ) =k*r?'+kpqp + k c q c - f  ( ~ * - ~ o ) ,  k c - - - ~ - ,  qc = [~(c)[ dt. 
~qc o 

(17) 
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Here, in the general case, f * * * = f (qp, qc, T), and the function f** characterizes the rate of removal of the iso- 
tropic hardening and represents the effect of  time delay of the variation in the material yield strength relative 
to the temperature change [5]. In the particular case with the same mechanisms of isotropic hardening of the 
material owing to accumulated values of  the instantaneous plastic deformation qp and the creep qc we have 
kp -- kc. Now, in addition to prerequisite (9) for the origination of instantaneous plastic deformations, according 
to Eqs. (12), (16), and (17), in lieu of  Eq. (13) we obtain 

(6 - krT" - k c fi (c) + f "  (13,, T)) sign (13 - 13') > k~ r + k c . . . .  qc - f**  (13" - 130)*, 

but constraint (15) holds. 
Thus, the considered variant of the material model describes basic effects characteristic of the inelastic 

behavior of a structural material under nonisothermal conditions. Among these effects the following should be 
noted: variation in the yield strength with change in the deformation direction (the Bauschinger effect); con- 
tbrmity to the Masing principle extended to nonisothermal conditions [5]; cyclic isotropic hardening and sof- 
tening of  the material; unsteady and steady stages of creep at constant load; interference of creep and 
instantaneous plastic deformation; variation in the creep rate with same-sign stepwise loading and alternating- 
sign loading; reverse creep during the unloading and in the unloaded state; relaxation of microstresses and res- 
toration of plastic properties (relaxation) of  the material; recrystallization effect on the removal of the isotropic 
hardening; and delay of variation in the yield strength under nonisothermal conditions. 

Notwithstanding the long list of  the considered effects, the selection of parameters for the examined 
model variant requires a relatively small volume of experimental data obtained in standard tests of the material 
specimens in uniaxial loading. Physical concepts of the micromechanism of the inelastic deformation of poly- 
crystalline materials permit the concretization of  the form of  the functions fc, f " ,  and f** and thus the simplifi- 
cation of selecting numerical values for the model parameters. These functions can be represented by the 
product of two multipliers, one of which depends only on temperature and the other is expressed by a hyper- 
bolic sine of an argument, which, in turn, depends on relevant stress and temperature. Then, it is possible to 
write 

13 --  ( r  

fc = C (T) sinh B (T) 
13" 

13' f** = C* B* .f"= C' (T) sinh B' (T) --7, • (T) sinh (T) - -  
13 

130 

13" 

The number of the selected model parameters decreases under the assumption that the effects of the 
instantaneous plastic deformation and creep on the material hardening are identical, i.e., kp = kc and kp = k c. 

Physically, the functions C(T) and C'(T) characterize activation energies for the processes of surmounting, by 
dislocations, the barriers to their movement and of the climb of dislocations to parallel slip planes, respectively 
[5]. As a first approximation it is possible to regard these energies as equal and to set C'(T)= kcC(T). The 
functions B(T) and B'(T) are related to relevant activation volumes and as a first approximation it is also pos- 
sible to assume if(T) = B(T). 

With the above simplifications for selecting parameters of the model of a polycrystalline stmctural ma- 
terial, it is sufficient to have tensile diagrams for specimens at various temperatures and creep curves at various 
tensile stresses and temperatures; and for separation of the effects of isotropic and anisotropic hardening, it is 
sufficient to have experimental data tbr alternating-sign cyclic loading of the specimens. Parameters of the 
function f** can be selected from the data on the rate of crystallization in annealing and the delay time for a 
variation in the yield strength under nonisothermal conditions. For cyclically stable materials, which do not 
display the properties of isotropic hardening or softening (kp = kc = 0 and f* = 0), under the assumptions made 
it is necessary to select only the functions kp, kr, k~, and C(T), B(T). 
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N O T A T I O N  

T(xb x2, x3, t), absolute temperature; xi (i = 1, 2, 3), t, Cartesian coordinates and time; ~(X 1, X2, X3, t), 
thermodynamic temperature (scalar internal parameter); x}t), ~}2), and ~6, intemal parameters characterizing two 
mechanisms of heat propagation and nonequilibrium mechanical processes; "CT, ~q~), ,(q2), "Ca, Z, ~1), ~2), Zij, 
relaxation times and steady-state values of relevant structural parameters; 9, density; A, mass density of internal 
energy; e})0, E}jT), components of deformation tensors determined by thermodynamic and absolute temperatures; 
Bo(T), BI(T, X), functions defining variation in free energy solely as a result of variation in T and Z; To, tem- 
perature of natural state; ~ii, components of stress tensor; h, mass density of energy; Cokt, Dr~ t, Hok t, compo- 
nents of symmetric tensor of elasticity coefficients and tensors specifying the effect of thermodynamic 
temperature and internal tensor parameter on stresses; qi(x~, x2, x3, t), components of the vector of heat flux 
density; ~.I] ), X~), ~.~), ~I 4), heat conduction tensors due to various mechanisms of heat propagation; cE = 
-T~2B~v/3T 2, c'~ = -T~2B1/(OT/O~), specific mass heats at constant deformations due to absolute and thernlody- 
namic temperatures; hi, components of unit vector of outward normal to the surface of the front of heat wave 
propagation; (') = ~( )/Ot; e(P), plastic deformation; e¢c), creep; ~(e), elastic defbrmation; E (r), thermal detbrma- 
tion; ~, or, stress applied to the material specimen and mean value of microstresses in material; ~*, yield 
strength of material; c~, yield strength of material after annealing; .f', f*, functions characterizing anisotropic 
and isotropic hardening of material, respectively; qp, absolute accumulated plastic deformation; fc, function de- 
fining the creep rate; f " ,  function specifying the rate of removal of anisotropic hardening of the material as a 
result of relaxation of microstresses; E(T), elastic modulus of the material under tension; f**, function charac- 
terizing the rate of removal of isotropic hardening; qc, absolute accumulated creep; C(T), C'(T), C*(T) and B(T), 
B'(T), B*(T), temperature functions selected from results of testing the material specimens at different but fixed 
temperatures. 
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